Energy efficiency in industrial steam production and distribution

Workshop Energy-efficiency
13-15 March 2006, Ljubljana

Dries Maes
Flemish Institute for Technological Research
Belgium

Structure

1) Working with steam?
2) To Determine the cost of steam
3) Different points and ideas to save energy in a steam system
Structure

1) Working with steam?
2) To Determine the cost of steam
3) Different points and ideas to save energy in a steam system

Working with steam in the industry?

Different heat transport fluids are available
- Water
 - no transition to steam allowed
 - temperatures are not too high: ± 150°C
- Thermal oil
 - specific composition of the oil for long lifetime
 - higher boiling temperatures so higher operating temperatures.
- Steam
 - Specific use of latent energy in the fluid
 - High heat transfer gives smaller heat exchangers
- Water: 4,000 W/m²°C
- Oil: 1,500 W/m²°C
- Steam: > 10,000 W/m²°C
Working with steam in the industry?

- **Benefits of higher pressure:**
 - The steam has a higher temperature
 - The volume is smaller, the distribution pipes are smaller.
 - It is possible to distribute at high pressure and to relax steam prior to application. The steam thus becomes dryer and reliability is higher.
 - a more stable boiling process in the boiler.
 - ...

- **Benefits of lower pressure:**
 - There is less loss of energy at boiler level and in the distribution
 - The amount of remaining energy in the condensate is relatively small.
 - Leakage losses in the pipe system are lower.
 - ...

!! Working with steam also has implications for safety, reliability, costs, lifespan of the equipment... !!!
Structure

1) Working with steam?
2) To Determine the cost of steam
3) Different points and ideas to save energy in a steam system

The cost of steam?

Different factors:

- \(C_F \) Fuel
- \(C_W \) Water supply
- \(C_{BFW} \) Feed water treatment (includes softening, clarification..)
- \(C_P \) Feedwater pumping power
- \(C_A \) Combustion air fan
- \(C_R \) Sewer charges for boiler blowdown
- \(C_D \) Ash disposal costs
- \(C_E \) Environmental emissions management and control cost (includes additives)
- \(C_M \) Maintenance materials and labour
The cost of steam

- Fuel costs are normally by large the most important costs:
 \(C_G = 1.1 \times C_F \)

- What does this cost mean?
 - average cost
 - no effect of different pressure levels
 - no effect of marginal consumption
 - no effects of regulation or intermediate electricity production
 -

Average versus marginal costs of steam

Average cost
= Total operating cost / Total Steam
= \(C_O/S \)

Marginal cost
= Marginal production cost / Marginal quantity of Steam Consumption
= \(\Delta C_O/\Delta S \)

Very different approach, but more correct for the evaluation of energy saving measures
The cost of steam: via marginal costs, example

- Marginal cost is highly variable
- Picture differs for every steam pressure level
- Cost shows influences of varying efficiencies, turbines, pressure-reducing valves,...
Structure

1) Working with steam?
2) To Determine the cost of steam
3) Different points and ideas to save energy in a steam system

Different ways to save energy in a steam system

- Use economisers to pre-heat feedwater
- Install an air pre-heater
- Prevent scale deposits on heat transfer surfaces. Ensure deposits are regularly removed on the waterside of boilers
 - Minimize boiler blowdown
 - Recoverable heat from boiler blowdown
 - Minimize boiler short cycling losses
- Consider installing high-pressure boilers with backpressure turbine generators for the production of electricity or for rotating installations
 - Implement a control and repair programme for steam traps
 - Install insulation on steam pipe and condensate return pipes
- Installation of removable insulating pads on valves and fittings
- Collect condensate and return it to the boiler for re-use
- Re-use of flash steam
- Use of flash steam on the premises or through recovery of condensate at low pressure
- ...
1) Implement a control and repair programme for steam traps

- Steam systems without regular inspection often have defective steam traps
- Without inspection, after 3 to 5 years, 30% of all steam traps need repair or replacement
- Normally, a distribution system should have less than 5% of defective steam traps.
- Critical traps:
 - High pressure steam traps
 - Traps connected to expensive or critical equipment.

Function of steam traps

- Prevent the steam to pass.
- Evacuate the condensate (once all the energy has been used)
Different operation modes for steam traps

<table>
<thead>
<tr>
<th>Description</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>All right</td>
</tr>
<tr>
<td>ES</td>
<td>Steam escaping</td>
</tr>
<tr>
<td>LK</td>
<td>Leaks</td>
</tr>
<tr>
<td>FC</td>
<td>Fast cycle</td>
</tr>
<tr>
<td>FX</td>
<td>Fixed</td>
</tr>
<tr>
<td>SB</td>
<td>Submerged</td>
</tr>
<tr>
<td>OO</td>
<td>Out of order</td>
</tr>
<tr>
<td>NT</td>
<td>Not tested</td>
</tr>
</tbody>
</table>

Related costs of escaping steam

- Amount of escaping steam can be huge.
- Defective trap represents large losses
- Example:
 - leakage
 - standard application
 - operating pressure difference : 15 bar
 - losses : 16,650 € per year
- If not simply leaking, but full Blow-through : 66,570 € per year
- These costs easily justify a control programme for steam traps.
2) High pressure boilers and turbines to produce low-pressure steam

- The intervention is large. Economic yield can be equally large.
- This is applicable if:
 - continuous steam supply is necessary
 - or continuously steam is being reduced in pressure by PRV’s
- Alliance with electricity providers is often possible.
Steam is used at this point.

Steam is prepared at higher pressure (100 bar)

Expansion of the steam over a turbine to produce electricity

Steam is used at this point.
Example

- Situation:
 Boiler needs to be replaced:
 - 25 tonnes/h of steam
 - at 15 barg
 - efficiency 74%
 - 6,500 hours per year operating time

Options:
1) Replace by equivalent boiler of better quality
2) Replace by high-pressure boiler and back-pressure turbine

Example

a) Yearly operating cost of the old boiler:
\[
\frac{6500 \text{ h/year} \times 2459 \text{ kJ/kg} \times 25 \text{ t/h} \times 3.8 \text{ €/GJ}}{0.74 \times 1000} = 2.051.836 \text{ €/year}
\]

b) Operating cost of the new boiler (new boiler equivalent with the old one, option 1)
\[
\frac{6500 \text{ h/year} \times 2459 \text{ kJ/kg} \times 25 \text{ t/h} \times 3.8 \text{ €/GJ}}{0.80 \times 1000} = 1.898.041 \text{ €/year}
\]
Example

c) High pressure boiler, yearly operating cost (option 2)
\[
\frac{6500 \text{ h/year} \times (3017.5 \text{ - } 335) \text{ kJ/kg} \times 25 \text{ t/h} \times 3.8 \text{ €/GJ}}{0.80 \times 1000} = 2.070.555 \text{ €/year}
\]
Steam is overheated to 330°C to make energy available for the turbine

d) Amount of electricity generated by the turbine
\[
\frac{6500 \text{ h/year} \times 150.9 \text{ kJ/kg} \times 25 \text{ t/h}}{0.97} = 7.022 \text{ MWh/year}
\]
Annual gain is equivalent to 351.106 €/year

This compensates largely for the higher operating cost

Practically

- Turbines can be interesting when:
 - high operation load during the year
 - large use of lower pressure steam
 - energy prices have an important role (collaboration with electricity providers can be interesting)
 - not the first measure to be taken, but can be considered when high energy efficiency has been achieved by other measures.
3) Minimising Blowdown and recuperation of Blowdown energy

- **Blowdown**: necessary discharge of boiler water to
 - reduce concentration of salts in the boiler water
 - remove suspended particles in the boiler water
- Blowdown percentages depend largely on the quality of fresh water preparation.
Deconcentration blowdown

Minimising Blowdown?

- TDS (Total dissolved salts) concentration needs to be controlled.
- Example: initial blowdown rate is 8%
- Boiler:
 - 25 bar
 - 5,500 hours a year.
 - 25 tonnes of steam per hour
 - boiler efficiency 82%
 - Gas: 5 €/GJ
 - Freshwater 1,3 €/ton
 - Discharging 0,1 €/ton
Minimising Blowdown?

- Automatic blowdown control reduces blowdown rate from 8% to 6%.
- 8% -> 2,08 t/h
- 6% -> 1,5 t/h
- Gains: $\frac{578 l/h \times 5500 h \times 553.1 kJ/kg \times 5 \text{€/GJ}}{0.82 \times 1000.000} = 1072 \text{€/year}$
- Water savings: 4,451 €/year
- Total: 15,172 €.

Recuperation of energy from Blowdown

<table>
<thead>
<tr>
<th>Recovered energy from blowdown losses, in MJ/h [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blowdown rate</td>
</tr>
<tr>
<td>% of boiler supply</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>1%</td>
</tr>
<tr>
<td>2%</td>
</tr>
<tr>
<td>4%</td>
</tr>
<tr>
<td>6%</td>
</tr>
<tr>
<td>8%</td>
</tr>
<tr>
<td>10%</td>
</tr>
</tbody>
</table>

[1] These quantities have been determined based on a boiler supply of 10 tonnes/h, an average temperature of the boiler water = 20°C, and a recovery efficiency of 88%.
Solubility of oxygen in water in function of the temperature

Solubility of oxygen (ppm)

Water temperature (°C)

Mission 6.2: Energy Efficiency

Dries Maes, STE
VITO, Mol
Ljubljana, 13-15 March 2006
Conclusions

- Much more interventions are possible
- Raising energy prices make several interventions economically interesting
- Good set-up of priorities necessary among different interventions (economic yield of interventions may interact)
- Definitively a good idea to look into any existing steam system.

Thank you

Dries Maes

VITO, Flemish Institute for Technological Research
Boeretang 200
2400 Mol
Belgium
+32/14/33.58.27
Dries.maes@vito.be