Efficient Lignite Power Plants

Mission 6.2: Energy Efficiency

Development of Energy Efficiency

Source: RWE Power; Das Vorhaben BoA 2/3 Neurath, 2006
EU-Twinning Project SL04/EN/01

Integrated Pollution Prevention and Control (IPPC)

Mission 6.2: Energy Efficiency

Peter Radgen, Dr., STE
Fraunhofer Institute System and Innovation Research, Karlsruhe
Ljubljana, 13 -15 March 2006

Full Load Hours of Power Stations in Germany (2004)

<table>
<thead>
<tr>
<th>Power Station Type</th>
<th>Full Load Hours (2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>7260</td>
</tr>
<tr>
<td>Lignite</td>
<td>7240</td>
</tr>
<tr>
<td>Coal</td>
<td>4500</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>2100</td>
</tr>
<tr>
<td>River run water</td>
<td>5620</td>
</tr>
<tr>
<td>Wind</td>
<td>1400 - 1700</td>
</tr>
</tbody>
</table>

Source: VGB, Essen.

Further Developing Power Plant Technology

- Medium-term developments until approx. 2015/20

Efficiency in %

- **Coal**
 - **HC = Hard coal**
 - **L = Lignite**

Technology lever lignite drying

- **HC + 4 % pts.**
- **L + 8 % pts.**

Technology lever 700 °C KW

- **L > 50 %**

Technology lever lignite pre-drying

- **50 % efficiency threshold can be reached by 2020.**
- **Pre-drying can compensate for lignite’s efficiency drawbacks compared to HC.**
- **Natural gas CC plants can reach 63% efficiency.**

Mission 6.2: Energy Efficiency
Possible Efficiencies Today

Lignite

Coal

Natural Gas

Possible Improvements of the BoA Process
Basics for Lignite Drying

• Typical Analysis of Lignite
 \(H_u = 10000 \text{ kJ/kg}; \) water content 53 mass %, Ash content 14 mass-%

• Result: A share of the fuel energy is used to evaporate the water content in the fuel

• Aim: Recovery of the required evaporation energy

• Solution: Drying of lignite before combustion in the boiler. Recovery of drying energy by condensation of the vapours from the drying process

Milenstones for Efficiency Increase

2015: Lignite pre-drying
- Efficiency: +4% points
- **today:**
 - WTA prototype
 - Testing of full-scale drier

2020: 700C power plant
- Efficiency: +4% points
- **today:**
 - COMTES700 etc.
 - Manufacturing and testing of all important components
Increase in Steam Parameters

The increase in steam parameters from 280 bar/600°C to 350 bar/700°C calls for the use of a new material generation, especially for:

- Final superheater outlet headers, steam pipes to turbine
- Final superheater banks
- Membrane walls

Integrated projects for material qualification and component demonstration have been launched:

- Component testing plant, Scholven PP
 (EU project - COMTES 700)
 Goal: Testing of major components.
 Budget: € 15.3 mill., start of operation: 2005
- Weisweiler, Esbjerg and Komet 650 test rigs
 Goal: Qualification of potential materials.
 Budget: approx. € 2.0 mill., already started.

The technical feasibility of the 700°C power plant and reaching economic efficiency are enormous challenges.

Energetic drawbacks:
- Drying at **very high** exergy level
- **No utilization** of vapour energy

Energetic improvement:
- Drying at **low** exergy level (low-pressure steam)
- **Utilization** of vapour energy

Efficient lignite pre-drying permits efficiency advantages of some 4 percentage points.
EU-Twinning Project SL04/EN/01
Integrated Pollution Prevention and Control (IPPC)

Mission 6.2: Energy Efficiency
Fraunhofer Institute System and Innovation Research, Karlsruhe
Ljubljana, 13-15 March 2006

WTA Process Diagram

- Raw lignite 0 - 80 mm
- Fine raw lignite milling
- External steam for heating
- Drier
- Dry lignite cooler
- Steam fluidized bed
- Vapour ESP
- Vapour from coal water
- Feed water
- Vapour condenser
- Vapour condensate
- Circulation blower
- Dry lignite 0 - 1 mm
- Condensate
- Dry lignite secondary milling
- Raw lignite 0 - 80 mm
- Raw lignite bunker

Source: RWE Power; Dr. Ewers

Mass and Energy Balance at Standard Operation of BoA Niederaußem

EU-Twinning Project SL04/EN/01
Integrated Pollution Prevention and Control (IPPC)

Mission 6.2: Energy Efficiency
Fraunhofer Institute System and Innovation Research, Karlsruhe
Ljubljana, 13-15 March 2006
Emission Limits

- SO_2
 - 200 mg/m3 and a minimum separation rate of 85%
 (achieved by wet flue gas cleaning and gypsum production; capturing also HCL and HF)

- NOx
 - 200 mg/m3 (achieved using specialized burners)

- CO
 - 200 mg/m3 (achieved using specialized burners)

- Dust
 - 30 mg/m3 (achieved using electrostatic filters; capture rate 99.8%)

Economic Considerations

- Efficiency Increase: About 4 %-points
 - 10 % reduced resource consumption
 - 10 % reduced CO₂-Emissions compared to today's most modern lignite power plants
- Increase in Investment: About 5 %
 - Add costs for Drying plant
 - Reduce cost for flue gas cycling and coal mills. (smaller components in the flue gas path)

Based on the development of the market for CO₂ certificates the lignite power plant with pre-drying has equal or smaller power generation costs.

The Importance of the CO₂ Certificates market

- \(\text{C} + \text{O}_2 \rightarrow \text{CO}_2 \quad [12 + 32 = 44] \)
- \(\text{CO}_2/\text{C} = 44/12 = 3.67 \)
- 1 t coal for power generation costs about € 70
- 1 t coal = 0.75 t C
- 0.75 t C = 2.75 t CO₂
- 2.75 t CO₂ = 2.75 Emission Certificates
- 2.75 Certificate x 20 €/Certificate = 55 €

- The costs for disposal approach the costs for supply
Comparing Efficiencies and costs for different generation technologies

<table>
<thead>
<tr>
<th></th>
<th>KW ohne CO2-Abtrennung</th>
<th>KW mit CO2-Abtrennung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Referenz-kW</td>
<td>BoA-Plus</td>
</tr>
<tr>
<td>Wirkungsgrad [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>47</td>
</tr>
<tr>
<td>Spez. Investkosten [EAW]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1120</td>
<td>1160</td>
</tr>
<tr>
<td>Stromerzeugungskosten [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>190</td>
</tr>
</tbody>
</table>

* inkl. CO₂-Vendichtung, Vorwärmung and 500 km Transport
** inkl. Vollmacht, d.h. rd. 4 % Pkwa. Vertiefung gegenwärtiger Rohstoffkraft berücksichtigt

- Starkere Wirkungsgradanbauten bei CO₂-Abtrennung vor allem bei konv. Technik heißt: Ressourcenverbrauch steigt drastisch
- Massiver Erhöhung der Stromerzeugungskosten durch CO₂-Abtrennung

Mission 6.2: Energy Efficiency

Peter Radgen, Dr., STE
Fraunhofer Institute System and Innovation Research, Karlsruhe
Ljubljana, 13 -15 March 2006

Stop global warming!

Fight green house effect

Should we not better save the environment in July

Peter Radgen, Dr., STE
Fraunhofer Institute System and Innovation Research, Karlsruhe
Ljubljana, 13 -15 March 2006